Wildlife as Biosamplers: Contaminants in Hair of Elk Harvested Near the Anaconda Smelter Site

Keywords
Ecology
Environmental science
Montana
elk
wildlife management
Montana Tech of the University of Montana
Cervus elaphus
Biomonitoring
Natural resource management
arsenic
anaconda smelter stack
bioindicators
hair
hair samples
pollution
Years
Authors
Volumes
Volume 18, No. 1-4

Wildlife as biosamplers: 
Contaminants in hair of elk harvested 
Near the anaconda smelter site
 Karen L. Gillespie, Environmental Engineering Department, Montana Tech of The University of 
Montana, Butte, MT 59701
Holly G. Peterson, Environmental Engineering Department, Montana Tech of The University of 
Montana, Butte, MT 59701
Casey M. Clark, Environmental Engineering Department, Montana Tech of The University of Montana, 
Butte, MT 59701
Jennifer S. Black, Environmental Engineering Department, Montana Tech of The University of 
Montana, Butte, MT 59701
Abstract
The purpose of this research was to test a new way of investigating biological uptake of 
smelting-related contaminants with a focus on harvested wildlife.  Specific objectives were 1) 
to collect hair samples from elk (Cervus elaphus) harvested in the vicinity of the Anaconda 
Smelter National Priority List Site in Montana, 2) to analyze the samples using inductively 
coupled plasma – mass spectrometry (ICP-MS), and 3) to identify potential elements of 
concern from the data.  Hair samples were collected from 56 elk, and concentration data 
were processed using a hazard quotient/index approach based on concepts commonly used 
in fields of ecological and human health risk analyses.   Arsenic concentrations in the hair 
decreased as a function of increasing distance from the Anaconda smelter stack, and 57 % 
of the elk sampled were identified as animals of concern.  For elk harvested within 25 km of 
the stack, elements of concern were aluminum, arsenic, barium, boron, lithium, manganese, 
molybdenum, strontium, and vanadium.  For elk harvested within 76-101.5 km of the stack, 
elements of concern were aluminum, barium, boron, lithium, and manganese.  Hazard 
indices for uranium, arsenic, cadmium, and lithium were larger by factors of ~17, 9, 7, and 6, 
respectively, for elk harvested within 25 km of the stack compared to hazard indices for elk 
harvested within 76-101.5 km.  
Key Words: arsenic, pollution, biomonitoring, hair samples.
Introduction
uptake using domestic pets as bioindicators 
For more than a century, smelting 
of environmental conditions in Butte and 
activities in Anaconda caused wide-spread 
Anaconda (Peterson and Madden 2006).  
contamination in Montana.  The United 
The technique involved sampling the hair of 
States Environmental Protection Agency 
domestic dogs (Canis lupus familiaris) and 
(USEPA) listed the Anaconda Smelter 
cats (Felis catus),  analysis by inductively 
Site on the Superfund National Priorities 
coupled plasma-mass spectrometry (ICP-
List (NPL) in 1983 (USEPA 1998).  As a 
MS), and identification of elements of 
part of the Superfund activities, several 
concern with a hazard index approach 
contaminants have been characterized, 
similar to methods employed in the field 
risks to human health have been estimated, 
of risk analysis.  More than 400 samples 
and some cleanup has taken place.  
from the domestic pet population identified 
Unfortunately, few data have addressed 
eight elements of concern (aluminum, 
biological uptake of contaminants by human 
arsenic, boron, lead, lithium, manganese, 
or wildlife populations.  
molybdenum, and selenium) in residential 
neighborhoods of Butte and Anaconda 
During the past decade, we developed 
(Madden 2006, Barry 2006, Peterson and 
and tested a new way to study contaminant 
Barry 2006, and Robertson 2007).  


Similar to our previous field campaigns, 
as evidence of illegal drug and alcohol use 
the overall goal of the research presented 
(Pragst and Balikova 2006).  
in this paper was to improve understanding 
Elements in the bloodstream of 
of biological uptake of environmental 
mammals are transferred from the root cells 
contaminants.  Instead of domestic pets, 
into the hair shaft during growth stages 
however, we addressed harvested wildlife.   
(Beernaert et al. 2007).  Hair consists of 
Specifically, we targeted the local elk 
keratin with cysteine sulfhydryl groups 
(Cervus elaphus) population, and objectives 
capable of binding to metals and other 
were 1) to collect hair samples from elk 
elements (Mandal and Suzuki 2002).  
harvested in the vicinity of the Anaconda 
Siedel et al. (2001) and others presented 
Smelter NPL Site, 2) to analyze the samples 
uncertainties about external contamination, 
with ICP-MS, and 3) to identify potential 
but Hinwood et al. (2003) concluded hair 
elements of concern from the data.
sampling to be a good “screening-level” 
Uptake Of Contaminants By 
technique for studying environmental 
exposure if care is taken to properly handle, 
Resident Wildlife
rinse, and analyze the specimens.
As part of remedial investigation/
feasibility studies of the Anaconda Smelter 
In addition to our research in Butte 
Site, numerous sampling campaigns were 
and Anaconda, field campaigns elsewhere 
conducted to characterize risk and burden of 
have been advancing the legitimacy of 
pollutants on the surrounding environment 
hair sampling as a research tool.  Rashed 
(USEPA 1998).  Few studies, however, 
and Soltan (2005), for example, analyzed 
were performed to characterize exposure 
hair of goats (Capra hircus), sheep (Ovis 
and uptake of these contaminants for 
aries
), and camels (Camelus) in Egypt, and 
resident wildlife species, nor to monitor the 
concentrations of cadmium, cobalt, iron, 
efficacy of environmental cleanup.  Initial 
lead, manganese, and nickel in the hair 
assessment of ecological risk used a simple, 
correlated to contaminants in vegetation 
predictive food chain model (USEPA 1998) 
consumed by the animals.  D’Have et al. 
without direct consideration of wildlife.  
(2009) linked concentrations of lead and 
Following the initial assessment, a handful 
cadmium in hair of European Hedgehog 
of projects addressed contaminants in small 
(Erinaceus europaeus) to contaminant 
mammals and avian species (Hopper et 
concentrations in the soil.  Mercury 
al. 2002).  From recreational and wildlife 
concentrations were studied in hair of 
management viewpoints, however, large 
wild boars (Sus scrofa) by Sobanska 
mammal populations in the vicinity of the 
(2005), in hair of deer mice (Peromyscus 
Anaconda Smelter Site were neither sampled 
maniculatus) by Waring and Douglass 
nor monitored.
(2007), and in hair of sled dogs by Dunlap 
et al. (2007).  Beernaert et al. (2007) 
Hair samples As Biosamplers Of 
found linear relationships of lead and 
Environmental Exposure
cadmium among hair, kidney, and liver 
samples in the Wood Mouse (Apodemus 
We were the first to propose domestic 
sylvaticus).  McLean et al. (2009) also 
pet hair as a unique tool for studying 
linked concentrations of lead and cadmium 
residential exposure to mining-related 
in soil with hair concentrations from small 
contaminants (Peterson and Madden 2006).  
mammals residing near a decommissioned 
In human populations, however, hair and 
lead and zinc smelter in Australia.  Finally, 
toenails have been used for many years in 
pollution in Nairobi, Kenya, was studied 
the field of forensics to determine possible 
using hair samples from residential pets and 
cause of death by ingestion of toxic metals 
wildlife (Mwaniki 2007).  Prior to results 
and/or medicines (Chatt and Katz 1988).  
summarized here, however, no data were 
Likewise, human hair samples have been 
available for wild game species residing on 
used by law enforcement and by employers 
40          Gillespie et al.


or near contaminated Superfund sites in the 
A hazard quotient (HQ 
) of element i for 
ij
United States.
animal j was calculated as:
    

 
M
 C
Ethods
 
 
HQ =
 ij
 
(1)
ij 
As described in more detail by Gillespie 
   Rf Ci
(2011), we conducted field campaigns in the 
where C  was concentration of element i in 
Anaconda, Montana area during two hunting 
ij
the hair sample of animal j; and RfC  values 
seasons (October-November of 2009 and 
i
were the same reference concentrations used 
October-November of 2010).  In 2009, we 
in our other research projects (TEI 2005, 
collected hair samples from wild game at 
Peterson and Madden 2006, Madden 2006, 
the Montana Fish, Wildlife and Parks (FWP) 
Barry 2006, and Robertson 2007).  
hunting check station located along Mill 
Creek.  In 2010, we obtained samples at 
In addition to hazard quotients, 
the Mill Creek check station and at another 
two hazard indices were examined.  A 
FWP check station in Divide, Montana.  
normalized animal hazard index (HI ) was 
j
Both stations were selected based on elk 
calculated by summing the hazard quotients 
populations commonly harvested in the 
across the elements:
vicinity of the Anaconda Smelter NPL Site.
Regarding experimental protocol, we 
 
 
     
i=M
 
HQ
completed a questionnaire for each animal 
 
HI
 =
 
i=1 
 ij
(2)
in our study.  Specimens were assigned 

     N
identification numbers.  Hunters were 
also asked in which hunting districts and 
where was the number of elements.  
drainages the animals were harvested.  Other 
Likewise, a normalized element hazard 
information, such as sex and approximate 
index (HI ) was calculated by summing 
i
age of the animal, was documented 
the hazard quotients across the number of 
(Gillespie 2011).    
samples:
j=M
Hair samples, ~ 150 milligrams (mg) 
 
 
     
 
 HQ
in size, were removed from the harvested 
 
HI
 =
  j=1 
 ij
(3)

animals’ coats with clean stainless steel 
     M
scissors.  When possible, the hair sample 
where M was the total number of animals 
was collected from the region between the 
sampled.  As per the method of Peterson and 
shoulder and neck of the animal.  Samples 
Madden (2006), the target value was 1.0 for 
were sealed in contaminant-free envelopes 
both HI 
 and HI .  Animals with HI  values ≥ 
and stored until the end of each hunting 
j
i
j
1.0 were defined as animals of concern, and 
season when they were sent to Trace 
elements with HI values ≥ 1.0 were defined 
Elements, Incorporated (Addison, Texas).  
i
as elements of concern.
Hair was examined with a microscope and 
rinsed repeatedly with de-ionized water 
R
to remove external soil particles prior to 
Esults
analysis by inductively coupled plasma-
During field campaigns in 2009 and 
mass spectrometry.  Trace Elements, 
2010, we collected hair samples from 56 elk 
Incorporated, is a licensed, certified clinical 
harvested in the vicinity of the Anaconda 
laboratory.  
Smelter NPL Site (Fig. 1).  Harvest locations 
of the elk in the study corresponded to 
We analyzed the concentration data 
distances ranging 7.5-101.5 km from the 
using the hazard index technique of Peterson 
Anaconda smelter stack, and our dataset 
and Madden (2006).  The method is based 
consisted of hair samples from 31 adults, 25 
on concepts commonly used in the fields of 
sub-adults, 28 males, and 27 females (Table 
ecological and human health risk analyses.  
1).  Adult elk in this project were defined 
Wildlife as Biosamplers: Contaminants in Hair of Elk Harvested Near the Anaconda Smelter Site       41


Figure 1.  Map of harvest locations (circles) for 56 elk sampled during field campaigns 
in 2009 and 2010.  The Anaconda smelter stack is represented by a diamond, and harvest 
locations are labeled with sample identification numbers.  As a scale of reference, the distance 
between the stack and harvest location is 19.1 km for Sample 2010-28, and the corresponding 
distance is 101.5 km for Sample 2010-59. 
as 3 years of age and older, and sub-adults 
Using Equation (1) to calculate hazard 
were younger than 3 years.    
quotients, Figure 3 depicts data for 14 
Concentrations of arsenic in the elk 
elements in Samples 2010-28 and 2010-59.  
hair decreased as a function of increasing 
The elk for Sample 2010-28 was harvested 
distance from the stack (Fig. 2).  Thirty-six 
~19.1 km southeast of the smelter stack, and 
(~ 64 percent) of the samples contained 
the elk for Sample 2010-59 was harvested 
arsenic concentrations greater than a 
~101.5 km southwest of the stack.  Thirteen 
reference concentration of 0.20 parts per 
elements in Sample 2010-28 exceeded 
million (ppm), and based on the best-fit 
a hazard quotient of 1.0, and elements 
equation in Figure 2, arsenic concentrations 
with the highest HQ  values were lithium 
i
did not fall below 0.20 ppm until harvest 
(42.9), manganese (25.6), and arsenic 
distances were greater than ~ 58 km from 
(24.5).  In contrast, the only elements in 
the stack.           
Sample 2010-59 with HQ  values ≥ 1.0 were 
i
42          Gillespie et al.


Hi j
0.6 0.7 0.7 0.9 0.8 1.2 5.0 10.7 1.1 1.2 1.4 1.1
0.6 1.7 2.0 0.7 0.7 1.7 0.6 0.5 0.5 1.1 1.8 0.6 0.7 0.5 1.1
), arsenic  j
Senic  hq j 0.4  0.4  0.3  1.5  2.0  2.2  2.6  24.5  4.1  1.8  1.8  0.6  0.6 1.0  0.8  0.7  1.1  1.0  9.9  0.4  0.2  0.4  6.7  4.1  1.3  1.0  0.5  2.5 
Ar  
senic 

0.08  0.07  0.05  0.30  0.40  0.43  0.51  4.89  0.82  0.35  0.35  0.12  0.5  0.20  0.15  0.14  0.22  0.19  1.98  0.07  0.04  0.07  1.33  0.82  0.26  0.20  0.09  0.50 
Ar  (ppm)c j 
X j  (km) 93.1  93.1  59.1  85.6  83.5  51.6  51.4  19.1  19.1  25.5  45.9  45.9  0.09  54.0  74.8  62.2  41.1  41.1  7.5  81.0  101.5  101.5  19.1  27.4  32.1  36.5  32.1  21.4 
Anaconda smelter stack (X

 
29  30  31  32  33  34  35  36  37  38  39  40  51.6  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56 
nown
nk
 
Class 
A  
A   A   A   A  
S   S   S   S 41 
A  
S   A 
A  
S  
A  
FS   FA   M FA   M M M M FA   M M M M FA   FA   M FA   M M FS   FA   M FS  M FA   FS   FA   M
lt, U = U

-Adu
Ple I
 
ub
Sam
2010-20  2010-21  2010-22  2010-23  2010-24  2010-26  2010-27  2010-28  2010-29  2010-30  2010-32  2010-33  2010-35  2010-36  2010-37  2010-43  2010-44  2010-45  2010-48  2010-57  2010-58  2010-59  2010-60  2010-61  2010-62  2010-63  2010-64  2010-67 
ale S
) for 56 elk harvested during field campaigns in 2009-2010. 
em
j
S = F
Hi j 
1.9  1.4  1.7  2.0  1.3  1.2  1.2  1.0  0.8  1.1  1.3  0.7  1.2  0.5  1.8  0.8  0.7  4.1  1.8  0.7  0.7  1.4  1.6  1.4  0.8  0.4  1.1  2.2 
, F
dult
ale A
Senic  hq j   4.2  5.6  3.5  4.1  1.4  3.5  1.5  5.3  1.5  2.2  5.8  0.3  2.2  0.2  0.5  0.6  0.6 
6.5  2.0  0.6  1.7  2.0  2.9  0.9  0.3  0.6  1.5 
em
Ar
10.3 
 
A = F
, F
Senic 
0.83  1.11  0.69  0.81  0.27  0.70  0.29  1.06  0.29  0.43  1.16  0.06  0.44  0.04  0.09  0.11  0.12  2.06  1.30  0.40  0.12  0.33  0.39  0.57  0.17  0.05  0.12  0.30 
), and animal hazard index (HI j
Ar  (ppm)c j
-Adult
ub
 
X j  
ale S
, sex-age class, animal number (j), distance between harvest location and 
(km)
18.3  11.7  49.5  25.0  83.4  35.3  47.0  27.9  23.8  25.0  35.1  45.9  36.5  85.9  85.9  97.5  50.8  54.4  30.9  34.9  40.8  40.8  49.2  49.2  97.5  97.5  97.5  85.9 
S = M
, M
J   
                 
1  2  3  4  5  6  7  8  9  10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28  
dult
ale A
 
A = M
), arsenic hazard quotient (HQ
Class* 
A   S   S   A   S  
A   S  
S  
S  
S   A   A  
S  
j
M M M M M FS   FS   FA   FS   FA   FA   FS   M M US   M FA   FA   FA   M FS   M M M FS   FA   M FA  
al:  M

nim
 Sample identification number
Ple I  
f A
Sam
2009-01  2009-02  2009-03  2009-04  2009-05  2009-06  2009-07  2009-08  2009-09  2009-10  2009-11  2010-01  2010-02  2010-03  2010-05  2010-06  2010-07  2010-09  2010-10  2010-11  2010-12  2010-13  2010-14  2010-15  2010-16  2010-17  2010-18  2010-19 
ass o
Able 1. 
   
                                                       
*Cl
concentration (C
Wildlife as Biosamplers: Contaminants in Hair of Elk Harvested Near the Anaconda Smelter Site       43


Figure 2.  Arsenic concentration in hair samples from elk harvested at distances ranging 
7.5-101.5 km from the Anaconda smelter stack.  A best-fit trendline of the data and an 
arsenic reference concentration of 0.20 ppm are also shown.     
Figure 3.  Hazard quotient values for Samples 2010-28 and 2010-59.  These hair samples 
were collected from adult elk harvested 19.1 and 101.5 km from the Anaconda smelter 
stack, respectively.  For 14 elements, the corresponding animal hazard indices (HI ) are 
j
10.7 and 0.5.
44          Gillespie et al.


aluminum (1.5) and boron (1.3).  For these 
Zone 1 to Zone 4 for most of the elements.  
two samples, the animal hazard indices 
In Zone 1, HI was ≥ 1.0 for aluminum, 

from Equation (2) were 10.7 and 0.5, 
arsenic, barium, boron, lithium, manganese, 
respectively.  Based on the HI  value ≥ 1.0, 
strontium, and vanadium.  Of these elements 
j
the elk corresponding to Sample 2010-28 
of concern, the largest hazard indices in 
was identified as an animal of concern, as 
Zone 1 were for arsenic (6.5), lithium (6.0), 
were 32 (~ 57 percent) of the 56 elk sampled 
and manganese (5.3).  For elk harvested 
(Table 1).  
in Zone 4, however, the only elements of 
As per concentration statistics 
concern were aluminum, barium, boron, 
of the data set, no samples contained 
lithium, and manganese, with manganese 
concentrations exceeding the reference 
exhibiting the largest hazard index (2.8).  
concentration for zinc (Table 2), and average 
Zinc showed no spatial variation among the 
and median concentrations were lower than 
zones, but the element hazard indices were 
reference concentrations for cadmium, iron, 
dramatically larger in Zone 1 compared to 
lead, molybdenum, strontium, uranium, 
Zone 4 by factors of 16.7 for uranium, 8.9 
vanadium, and zinc.  However, because 
for arsenic, 6.7 for cadmium, and 5.6 for 
the main source of contamination was the 
lithium.
smelter, we divided the samples into four 
zones according to distance (X) between 
Discussion
harvest location and the Anaconda smelter 
In this project, we proposed and tested 
stack: Zone 1 (X<25 km), Zone 2 (26-50 
a novel way to study contaminant uptake 
km), Zone 3 (51-75 km), and Zone 4 (76-
using elk as biosamplers of environmental 
101.5 km).  Element hazard indices were 
conditions near the Anaconda Smelter 
calculated with Equation (3) for each of 
NPL Site.  Even though the Environmental 
the four zones (Table 3), and elements of 
Protection Agency has been directing 
concern were identified.  
cleanup activities in the area for many years, 
While Zones 2 and 3 revealed more 
large mammal populations have not been 
variability, HI  values decreased from 
addressed.  Based on our data, elk in the 
i
Table 2.  Element (i), reference concentration (RfC ), minimum (Min), maximum (Max), 
i
average (Avg), median (Med), and standard deviation (Stdev) concentration (C ) measured in 
i
hair samples of 56 elk harvested during field campaigns in 2009-2010. 
  i 
Element I 
Rfc 
Min C 
Max C 
Avg c 
Med C  stdev c
I
I
I
I
I
I
 
 
 
(ppm)  (ppm) (ppm) (ppm)  (ppm) (ppm)
  1 
Aluminum (Al) 
32 

648 
73 
49 
103
  2 
Arsenic (As) 
0.20 
0.04 
4.89 
0.52 
0.29 
0.75
  3 
Barium (Ba) 

1.8 
45.6 
6.3 
4.6 
6.3
  4 
Boron (B) 
5.9 
3.6 
79.1 
12.2 
9.9 
10.1
  5 
Cadmium (Cd) 
0.20 
0.01 
0.56 
0.07 
0.03 
0.10
  6 
Iron (Fe) 
99 
12 
902 
84 
56 
130
  7 
Lead (Pb) 





1
  8 
Lithium (Li) 
0.08 
0.02 
3.43 
0.19 
0.11 
0.45
  9 
Manganese (Mn) 
3.3 
0.97 
84.51 
12.90 
8.54 
14.13
  10 
Molybdenum (Mo) 
0.22 
0.02 
1.6 
0.14 
0.08 
0.26
  11 
Strontium (Sr) 
5.4 
0.7 
41.1 
3.7 
2.7 
5.3
  12 
Uranium (U) 
0.20 
0.005 
1.1 
0.07 
0.015 
0.16
  13 
Vanadium (V) 
0.60 
0.02 
2.47 
0.35 
0.14 
0.52
  14 
Zinc (Zn) 
200 
70 
140 
100 
100 
10
Wildlife as Biosamplers: Contaminants in Hair of Elk Harvested Near the Anaconda Smelter Site       45


Table 3.  Element (i) and element hazard index (HI ) values for Zone 1 (X <25 km), Zone 2 
i
j
(26-50 km), Zone 3 (51-75 km), and Zone 4 (76-101.5 km).  Also shown is the ratio of the 
hazard indices for Zone 1:Zone 4.   
  i 
Element i 
Zone 1 
Zone 2 
Zone 3 
Zone 4  zone1:zone4
  
 
Hi  hi  hi  hi  ratio
I
I
I
I
  1 
Aluminum (Al) 
1.8 
1.6 
6.2 
1.6 
1.1
  2 
Arsenic (As) 
6.5 
2.2 
2.3 
0.7 
8.9
  3 
Barium (Ba) 
2.2 
1.2 
1.8 
1.6 
1.4
  4 
Boron (B) 
3.2 
2.0 
1.8 
1.6 
2.0
  5 
Cadmium (Cd) 
0.8 
0.3 
0.4 
0.1 
6.7
  6 
Iron (Fe) 
0.7 
0.5 
2.1 
0.8 
0.9
  7 
Lead (Pb) 
0.8 
0.5 
1.1 
0.5 
1.5
  8 
Lithium (Li) 
6.0 
1.5 
2.5 
1.1 
5.6
  9 
Manganese (Mn) 
5.3 
3.3 
5.9 
2.8 
1.9
  10 
Molybdenum (Mo) 
1.0 
0.4 
1.2 
0.4 
2.6
  11 
Strontium (Sr) 
1.3 
0.6 
0.6 
0.6 
2.3
  12 
Uranium (U) 
0.8 
0.2 
0.6 
0.1 
16.7
  13 
Vanadium (V) 
1.1 
0.5 
0.8 
0.3 
3.2
 
14 
Zinc 
(Zn) 
0.5 0.5  0.5 0.5  1.0
vicinity of the site are still being exposed to 
Specifically, studies should address the 
significant amounts of contamination.  While 
impact of contaminants on the health of 
results from this campaign are site-specific, 
the game animals; however, hunters and 
our technique could be used at other sites 
their families are also at risk of developing 
where anthropogenic pollution is of concern, 
health problems if they routinely ingest wild 
and where efficacy of remediation is in 
meat contaminated with arsenic and other 
question.    
contaminants.  This latter topic will be the 
Concentrations for many contaminants 
focus of a follow-up paper by our research 
in our dataset increased for elk harvested 
group.       
closer to the Anaconda stack.  Elk are 
migratory animals, however, and we know 
Summary
that contaminant concentrations in hair 
We conducted the first known field 
are not solely dependent on environmental 
campaign using hair samples to investigate 
conditions at the harvest locations.   To 
uptake of environmental contaminants for 
advance our fundamental understanding of 
harvested wildlife residing in a Superfund 
variability within and among the samples, 
area.  Based on 56 elk harvested in the 
we recommend future research to merge 
vicinity of the Anaconda Smelter NPL Site 
hair sampling with radio-collar tracking 
during hunting seasons in 2009 and 2010, 
for a subset of elk during the growth 
~57% of the elk sampled were identified as 
period of the hair (i.e., for several months 
animals of concern.  Manganese, arsenic, 
prior to hunting season).  With subsequent 
and lithium were identified as elements of 
environmental sampling along the migratory 
most concern, especially for elk harvested 
path, uptake of contaminants into hair could 
within 25 km of the smelter stack.  In 
be correlated to pollution concentrations 
addition, hazard indices for uranium, 
in the soil, vegetation, and water within 
arsenic, cadmium, and lithium were larger 
a specific habitat.  In addition, in-depth 
for elk harvested within 25 km of the stack 
medical research should scrutinize health 
by factors of ~17, 9, 7, and 6, respectively, 
effects associated with uptake of these 
compared to elk harvested within 76-101.5 
pollutants by the local elk population.  
km.  
46          Gillespie et al.


Acknowledgements
Gillespie, K. 2011.  Harvested wildlife as 
The authors thank Ms. Vanna Boccadori 
biosamplers: elk and deer in the vicinity 
and Mr. Braden Burkholder of the Montana 
of the Anaconda smelter national priority 
Fish, Wildlife and Parks (FWP) for their 
site.  Master of Science Thesis.  Montana 
interest in our project and for letting us 
Tech of The University of Montana.  
obtain samples at the Mill Creek and 
Butte, MT.  333 pp.
Divide game stations.  We also recognize 
Hinwood, A.L., M.R. Sim, D. Jolley, N. de 
the hunters who were willing to participate 
Klerk, E.B. Bastone, J. Gerostamoulos, 
in the campaign.  In addition, Mr. John 
and O.H. Drummer.  2003.  Hair 
Helfrich is acknowledged for sharing his 
and toenail arsenic concentrations 
invaluable knowledge about hunting and 
of residents living in areas with high 
trapping. Finally, we are grateful to Dr. 
environmental arsenic concentrations.  
David Watts and the laboratory personnel at 
Environmental Health Perspectives 
Trace Elements, Incorporated for agreeing 
111:187-194.
to analyze our somewhat-unconventional 
Hopper, M., G. Cobb, and S. McMurry.  
samples. 
2002. Wildlife biomonitoring at the 
Anaconda smelter site Deer Lodge 
Literature cited
county, Montana.  The Institute of 
Barry, S.  2006.  Domestic pets as 
Environmental and Human Health Texas 
biosamplers of mining-related 
Tech University, Lubbock, TX.  380 pp.
contaminants.  Master of Science Thesis.  
Madden, M.  2006.  Development of a 
Montana Tech of The University of 
biomonitoring technique using domestic 
Montana.  Butte, MT.  279 pp.
pets as sentinel species in a mining 
Beernaert, J., J. Scheirs, H. Leirs, R. 
impacted community.  M.S. Thesis. 
Blust, and R. Verhaagen.  2007.  
Montana Tech of The University of 
Non-destructive pollution exposure 
Montana, Butte, MT.  141 pp.
assessment by means of wood mice hair.  
Mandal, B. and K. Suzuki, 2002.  Arsenic 
Environmental Pollution 145:443-451.
around the world: a review.  Talanta 
Chatt, A. and S.A. Katz.  1988.  Hair 
58:201-235.
analysis: applications in the biomedical 
McLean, C., C. Koller, J. Rodger, and G. 
and environmental sciences.  VCH 
MacFarlane.  2009.  Mammalian hair as 
Publishers, Inc., New York, NY.  134 pp.
an accumulative bioindicator of metal 
D’Have, H., F. Vermeulen, V. Mubiana, N. 
bioavailability in Australian terrestrial 
Van den Brink, R. Blust, L. Berveots, and 
environments.  Science of the Total 
W. De Coen.  2009.  Relevance of hair 
Environment 407:3588-3596.
and spines of the European hedgehog 
Mwaniki, G.  2007.  Domestic pets and 
(Erinaceus europaeus) as biomonitoring 
wildlife as biosamplers of environmental 
tissues for arsenic and metals in 
contaminants in Nairobi, Kenya.  Master 
relation to blood.  Science of the Total 
of Science Thesis.  Montana Tech of The 
Environment 407:1775-1783.
University of Montana, Butte, MT.  198 pp.
Dunlap K., A. Reynolds, P. Bowers, and L. 
Peterson, H. and M. Madden.  2006.  
Duffy.  2007. Hair analysis in sled dogs 
Development of a new biomonitoring 
(Canis lupus familiaris) illustrates a 
technique using domestic pets as sentinel 
linkage of mercury exposure along the 
species.  Intermountain Journal of 
Yukon River with human subsistence 
Sciences 12:27-43.
food systems.  Science of the Total 
Environment 385:80-85.
Wildlife as Biosamplers: Contaminants in Hair of Elk Harvested Near the Anaconda Smelter Site       47


Peterson, H. and S. Barry.  2006.  Final 
Sobanska, M.  2005.  Wild boar hair (Sus 
report: domestic pets as biosamplers of 
scrofa) as a non-invasive indicator of 
mining-related contaminants.  United 
mercury pollution.  Science of the Total 
States Environmental Protection Agency, 
Environment 339:81-88.
National Risk Management Research 
Trace Elements, Incorporated (TEI).  2005.  
Laboratory.   118 pp.
Reference ranges and HTMA materials 
Pragst, F. and M.A. Balikova.  2006.  State 
and methods.  Trace Elements, Inc., Box 
of the art in hair analysis for detection of 
514, Addison, TX 75001. 
drug and alcohol abuse.  Clinica Chimica 
United States Environmental Protection 
Acta 370:17-49. 
Agency (USEPA). 1998.  Superfund 
Rashed, M. and M. Soltan.  2005.  Animal 
record of decision: Anaconda regional 
hair as biological indicator for heavy 
water, waste, and soils operable unit 
metal pollution in urban and rural 
Anaconda smelter NPL site.  EPA/ROD/
areas.  Environmental Monitoring and 
R08-98/096.  EPA Region VIII, Montana 
Assessment 110: 41-53.
Office, Helena, MT. 
Robertson, T. 2007.  Domestic pets as 
Waring, T. and R. Douglass.  2007.  Mercury 
biosamplers of toxic elements at a 
in mouse hair: a monitoring tool for 
Superfund site.  Master of Science 
environmental exposure.  Intermountain 
Thesis.  Montana Tech of The University 
Journal of Sciences 13:110-115.
of Montana, Butte, MT.  250 pp.
Siedel, S., R. Kreutzer, D. Smith, 
S. McNeel, and D. Gliss.  2001.  
Assessment of commercial laboratories 
performing hair mineral analysis.  
Journal of the American Medical 
Association 253:67-72.  
Received June 16, 2011
Accepted August 3, 2012

48          Gillespie et al.